

Implementation of GIS solutions by private sector

Practical experiences and future opportunities

Dr. Peter Pavlicko, Bratislava, 28.10.2010

Objectives

- Company introduction IT portfolio, projects and solutions
- Experiences with spatial data and services based on realized projects – current status and needs related to segment of geodesy, cartography and cadaster
- Visions and development plans
- Identification of potential for future work and cooperation

About the company and its customers

- The core of the business solutions and services oriented to development of technical and management information systems, internet applications and consulting services
- Projects realized for utility companies and public sector
 - focus on making and utilizing spatial data

selected customers:

- Geodesy, Cartography and Cadaster Authority of Slovakia (ÚGKK)
- SEPS (Slovenska elektrizacna prenosova sustava, a.s.) – the electricity transmission on the whole territory of Slovakia from power plants to the distribution network
- BAT (Bratislavska teplarenska, a.s.) central heat distribution company in Bratislava

Solutions for utility companies

 Utility infrastructure management systems with geospatial support – evidence of electricity transmission objects, heat transfer distribution system, management of protective zones, etc.

 SAP and GIS integration – GIS as a supporting system for managing and planning the maintenance of distribution systems with direct connection to

economics and business plans

 Added value – interconnection and identification of property in spatial context

 Digital spatial data utilization – internal and external

Technology and IT platforms

- Commercial platforms
- Platforms for utility companies:
 - Smallworld Core Spatial Technology 4
 - Smallworld Internet Application Server
 - SAP
 - Oracle
- Platforms for public sector:
 - ESRI (ArcGIS Desktop, ArcGIS Server)
 - Oracle

GIS framework

Detail map example of a transmission station in GIS framework

Assets of GIS systems implementation

- More effective support for operational management and functional status of technical infrastructure
- Standardization of operational and maintenance processes (geosupport)
 - data model, content definition and structure of technical, economic and geospatial data
- Processes (planning, maintenance, diagnostics and accidents handling), data (GIS objects) and application integration SAP PM and GIS
- Complex support for prevention and corrective maintenance

The role of spatial data - experiences

- External and internal spatial data
- Internal system data:
 - Spatial objects defined by data model (geodetic precision and methods of measurement)
- External data (various usage)
 - cadaster data (land ownerships vs. distribution and transmission network operations)
 - orthophoto images
 - administrative boundaries/topographic data
- Practical situations/examples
- Online access to up-to-date data (missing)

- cont.

- Cadaster data issues
 - time consuming process for import/export mechanisms by system administrator
 - up-to-date issue! (information flow between cadaster authority and system administration)
- Integration process of descriptive (property), cadaster and accounting information
- Control process for cadaster maps and descriptive data for protective zones around transmission networks
- Updating process for cadaster maps and descriptive data for protective zones around transmission networks

ZB GIS (Primary Base for Geographic Information System)

- The main goal distribution of national spatial reference data by web map services for governmental organizations, private sector and citizens
- Fundamental framework for building national spatial data infrastructure
- Phase of project system proposal/early phase of implementation
- Methodology and tools for topographic mapping, processing data and control mechanisms according to standards

vector topography (3D)

orthophoto

digital terrain model

Bratislava Becherov Malý Šariš Liptovská Mara Javorina Teplý vrch

geographical names

administrative boundaries

Referential system architecture

 Decomposition of ZB GIS referential architecture into subsystems and their relationships

Role of digital field mapping (precise measurements techniques and

online data access/update)

Current status/experiences

- Absence of fully vector up-to-date cadaster database (ownership) for the whole area of Slovakia
- Absence of electronic services and online access to spatial data – referential data and cadaster (land ownership) – ongoing projects funded by EU – future promise
- Technology not the weak point of solutions
- The need of up-to-date external data (cadaster, orthophoto) – long-term process!

Opportunities – Mobile GIS

- GIS in the field both utilities and topographic mapping
- Mobile GIS solutions save time and increase data accuracy, elimination of paper in the field
- Not yet implemented (internal/external data)
- Online and real-time mapping approaches technology, SW development, methodology

Conclusion and discussion

- Importance of data creation and updating
- Distribution and sharing spatial data via electronic services
- Mobile GIS opportunities

Tusen takk!